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Abstract

Intrinsic characterization of scenes is often the best way
to overcome the illumination variability artifacts that com-
plicate most computer vision problems, from 3D reconstruc-
tion to object or material recognition. This paper examines
the deficiency of existing intrinsic image models to accu-
rately account for the effects of illuminant color and sen-
sor characteristics in the estimation of intrinsic images and
presents a generic framework which incorporates insights
from color constancy research to the intrinsic image decom-
position problem. The proposed mathematical formulation
includes information about the color of the illuminant and
the effects of the camera sensors, both of which modify the
observed color of the reflectance of the objects in the scene
during the acquisition process. By modeling these effects,
we get a ”truly intrinsic” reflectance image, which we call
absolute reflectance, which is invariant to changes of illumi-
nant or camera sensors. This model allows us to represent
a wide range of intrinsic image decompositions depending
on the specific assumptions on the geometric properties of
the scene configuration and the spectral properties of the
light source and the acquisition system, thus unifying previ-
ous models in a single general framework. We demonstrate
that even partial information about sensors improves signif-
icantly the estimated reflectance images, thus making our
method applicable for a wide range of sensors. We validate
our general intrinsic image framework experimentally with
both synthetic data and natural images.

1.Introduction
In an intrinsic image decomposition [6], intrinsic images

of a given scene are the images depicting a single physical
characteristic of the scene (such as reflectance, illumination,
orientation, distance, transparency, specularity, luminosity,
and so on). While intrinsic image decomposition methods
initially focused on providing reflectance and shading im-
age estimates of a scene, other subfields in computer vision
estimate different intrinsic characteristics. Shape from shad-
ing methods [9] estimate the shape (i.e. orientation, depth...)
of the objects given a shading image. Color constancy meth-
ods [16] estimate the illuminant of the scene. Highlight re-
moval techniques [2] estimate image specularities. Intrinsic

(a) 2.83 ◦ (b) 0.89 ◦

(c) 3.44 ◦ (d) 1.26 ◦

(e) 13.62 ◦ (f) 8.50 ◦

(g) 18.69 ◦ (h) 3.31 ◦

Figure 1: Our model applied to natural images. (a) and (e)
are images of a given landmark, taken with different cam-
eras under different illumination conditions. (b) and (f) are
the images in (a) and (e) respectively, after removing the ef-
fects of the illuminant and the camera sensors. (c),(d),(g)
and (h) are the estimated intrinsic images of (a),(b),(e) and
(f), respectively. Chromatic angular error values are given
in degrees.

.

characterization of scenes is fundamental in multiple com-
puter vision applications. The complex ways in which light
interacts with shapes and materials continue to confound so-
lutions in areas that range from 3D shape reconstruction to
object recognition to material identification. In this paper
we argue that in order to increase accuracy in such appli-
cations, multiple intrinsic properties have to be studied in
conjunction, so that the appropriate intrinsic image for each
property can be estimated.
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Most early models of intrinsic image estimation either
worked with grayscale images [21, 8, 30] or assumed scenes
with Lambertian surfaces (i.e. they reflect the same amount
of light in all directions) and a single white light source
[28, 14], thus simplifying the decomposition into intrinsic
components to the product of its intrinsic images of shad-
ing and reflectance. This simplified formulation has been
commonly used ever since [19, 26, 15, 24]. Recently, in
[7], the Lambertian assumption was relaxed and a specu-
larity term was added to the model. Specularity detection
is a hard problem in itself and several specularity removal
techniques can be found in the literature (see [2] for a sur-
vey). Lately, in [5], the authors relaxed the white light as-
sumption while keeping the Lambertian surfaces and single
light source constraints. In their work, the shading image
was modeled as a function of the shape of the objects in the
scene, which can be described in many ways (depth maps,
normal maps, etc.), and the color and geometry (i.e. direc-
tion) of the light source of the scene. All these formulations
are consistent with the physically based dichromatic reflec-
tion model [25], which explains how light is reflected in a
scene under some simplifying assumptions.

However, the color value at each image pixel is not only
determined by the reflection model. During the image ac-
quisition process, three factors influence the color value that
we finally measure at each pixel: the reflectance of the ob-
jects in the scene, the illuminant of the scene, and the spec-
tral response of the camera sensors. While reflectance is an
intrinsic property of the objects, the illuminant and the cam-
era sensors modify the way we see this reflectance in the
images. That is why we must study and describe separately
these three factors by isolating the effects of both illuminant
and camera sensors. So far, however, existing methods on
intrinsic image decomposition provide reflectance intrinsic
images which contain mixed information about the color of
the illuminant (which is assumed white in many models),
object reflectance values and camera sensor effects. To the
best of our knowledge camera sensors have not been studied
before in the area of intrinsic image decomposition.

We draw insights upon the rich literature in color con-
stancy (hitherto somewhat disconnected from intrinsic im-
age research), which also aims to a stable representation of
object color across different images. The aim of color con-
stancy from the start [13] has been to estimate the color of
the scene under a canonical light source, which is similar to
the problem of reflectance estimation. Multiple works [16]
have provided different methods to estimate the scene illu-
minant from a single image, which in turn allows to remove
its effects and obtain a canonical color image. Constancy
research has also devoted some attention to the effects of
the imaging sensors for the final recovery of the canonical
illuminants. The narrow band property of the spectral sen-
sitivity of the sensors simplifies the illuminant change char-
acterization [11] and therefore its subsequent estimation. In
this paper we build upon the connection between these two
fields by extending the intrinsic model to include the effects

of the light source color and the biases introduced by the
sensors. Both factors have direct effects on the reflectance
computation.

In Fig. 1 we can see how our model works on natural
images. We can observe that the intrinsic reflectances of
a given material (estimate using the method of Serra et al.
[24]) are much closer after removing the effects of the illu-
minants and camera sensors, both qualitatively and quanti-
tatively, than the intrinsic reflectances of the same material
that we get from the original images.

In the formulation we propose, it is possible to study the
effects of the camera sensors and the color of the illuminant
and isolate them from the reflectance image. As a result, we
obtain a new reflectance image which is invariant to changes
of the camera sensors and the color of the illuminant. This
reflectance image, which we call absolute reflectance, is a
truly intrinsic image. Indeed in the second and forth rows
of Fig. 1 we see that the difference between the intrinsic
images has been minimized. The invariance of our abso-
lute reflectance image provides many practical advantages
in different scenarios. Our method is practically applica-
ble because such sensor information is sometimes publicly
available for many sensors and the color of the light can be
estimated with any state of the art color constancy method.
As we demonstrate in this paper even partial knowledge of
sensor characteristics leads to significant improvement in
the estimated intrinsic images. Furthermore, we believe that
for widely used sensors such as the Kinect, such corrections
could even be incorporated in the standard libraries for wide
use by developers for any application that relies on accurate
matching of surface appearances across different images.

2. Reflectance and color fundamentals
2.1. Color image formation: physics

When the light source is similar to a point source, the
spectral radiance outgoing from an object obj at an infinites-
imal patch at x along the direction vr was modeled in [18]
as

Lobj(x, vr, λ) = fr(x, vr, vi, λ)Li(λ) cos(θi). (1)

In this expression, Li(λ) is the incident radiance (i.e. irra-
diance), cos(θi) captures the geometry of the scene by ex-
pressing the reduction in the amount of light impinging the
surface at x due to the angle θi between the surface nor-
mal and the incident direction vi, and fr(x, vr, vi, λ) is the
bidirectional reflectance distribution function (brdf) of the
object that specifies how much of the incident light coming
from direction vi is reflected into the viewing direction vr
per unit wavelength λ at x. The brdf captures how light and
material interact to shape the appearance of an object. In
particular, the spectral power of the light outgoing from an
object depends on both the spectrum of the light source and
the reflectance of the object.

Several reflection models have been proposed in the field
of computer vision and computer graphics [22] which as-
sume different simplifications of the physics of light. Here



we use Shafer’s Dichromatic Reflection Model (DRM) [25]
because it offers a good trade-off between realism and prac-
ticability.

In Shafer’s DRM, light reflection is modeled as two in-
dependent reflection processes, each having a characteris-
tic spectral power distribution whose magnitude varies with
the direction of illumination and viewing. In the DRM, the
amount of light reflected per unit wavelength in direction
vr by a small surface patch at a point x of an object obj is
defined as

Lobj(x, vr, λ) =

mb(x, vr, vi)cb(λ) +ms(x, vr, vi)cs(λ), (2)

where cb and cs are functions describing the spectral distri-
butions of the body and the surface of the object, respec-
tively, and mb and ms, called diffuse and specular magni-
tudes, are geometric factors that weight the amount of light
coming from the body and the surface of the object, respec-
tively, and only depend on the geometry of the scene. Eq.1
and the DRM in Eq.2 are equivalent (see supplementary ma-
terial for the derivation).

To sum up, at the physical level the spectral composition
of the light reflected from objects in a scene is already a
mixture of the intrinsic reflectance of the object and of the
spectrum of the light. This interdependency can be mod-
eled mathematically, which will prove to be useful for the
formulation of the intrinsic decomposition below.

2.2. Color image formation: sensors

As explained above the light reflected from an object de-
pends on both its material reflectance and the color of the
light. Additionally, in the acquisition process, the resulting
image values are also affected by a third factor, namely the
camera sensors.

Cameras use a finite set of sensor responses to describe
the continuous light spectrum. These sample measurements
are obtained by spectral integration [20]. Camera sensors
vary widely with the characteristics of the camera, and
different cameras usually produce different measurements.
The values measured by the sensors of a camera are

pk =

∫
Lobj(x, vr, λ)Sk(λ) dλ, (3)

where Sk(λ), k = 1, 2, 3, are functions describing the ab-
sorption curves of the camera sensors and Lobj(x, vr, λ) is
the radiance outgoing from objects in a scene.

For most computer vision problems, it is important to
transform the measurements pk made with a given camera
to the measurements made with standard sensors Ss

k(λ),
1

psk =

∫
Lobj(x, vr, λ)S

s
k(λ) dλ. (4)

There exist several computational camera calibration mod-
els that estimate the sensitivity functions of the camera

1s superscript stands for ”standard”

[3, 23]. Given an estimate of the sensitivity functions of a
camera, and standard sensitivity functions, a transformation
matrix SSen converts theoretical responses for standard sen-
sors into those of the actual camera. Sensor transformations
are often described by 3-by-3 matrices [17]. If ps denotes
the vector whose standard coordinates are psk, and p denotes
the response of the camera whose coordinates are pk, we
have p = SSen · ps. In this work we use the standard RGB
(sRGB) sensitivity curves [1] as the standard sensor.

Moreover, as we will see in the next section, a valuable
property for a set of camera sensors is to be narrow band.
We say that a set of camera sensors is narrow band when
the overlap among these sensors is small, meaning that the
color response for each of the sensors scarcely influences the
responses of the other sensors. Narrow band responses are
uncorrelated, which proves to be critical for most computer
vision application among which color constancy.

2.3. Joint illumination/sensor modeling for intrinsic
images

As we have seen in the previous section (Eq.3), both
the spectral distribution of the light source and the sensor
properties affect camera measurements. Defining color con-
stancy algorithms able to provide image representations in-
variant to these dependencies has been a long-standing goal
in the computer vision community. Originally, the term
color constancy refers to the human ability to maintain a
stable color representation of the world irrespective of the
illuminant.

A classical approach in computational color constancy is
to estimate the color of the illuminant of a scene using a
single image and then subtract the illuminant to build a sta-
ble image under a canonical illuminant (see [16] for a sur-
vey). The canonical representation of the color of an image
is given by

pck =

∫
Lc
obj(x, vr, λ)Sk(λ)dλ, (5)

where Lc
obj(x, vr, λ) is the light reflected by the object un-

der the canonical illuminant. In this work we use the CIE
standard illuminant D65 as the canonical illuminant.

Let us now describe these transformations in a practical
way. In the color constancy literature, 3-by-3 matrices have
been commonly used to describe illuminant transformations
[13]. We denote by LCLig the color conversion that trans-
forms pixel values under the canonical illuminant to values
under the actual illuminant. As for camera sensor transfor-
mations, we have p = LCLig · pc. Several methods have
been proposed to find the appropriate transformation ma-
trix LCLig [16] and most of them rely on the sharpness of
the sensors and approximate the illuminant using a diago-
nal model [31, 11]. Spectral sharpening methods [12] are
sensor transformations, T , that convert a given set of sensor
sensitivity functions into a new set of functions which are
less overlapped,

T · p ≈ LCLig · T · pc. (6)



In general, spectral sharpening improves the performance
of color constancy algorithms that are based on an indepen-
dent adjustment of the sensor response channels.

Our objective is to describe the intrinsic components by
discarding both the effects of the color of the light and the
dependence on a particular set of camera sensors. The val-
ues

ps,ck =

∫
Lc
obj(x, vr, λ)S

s
k(λ) dλ (7)

represent the appearance of the objects under a canonical
illuminant and standard camera sensors. The relationship
between ps,c and p is

p = LCLig · SSen · ps,c. (8)

In this equation, LCLig and SSen isolate lighting and sensor
effects respectively.

3. Generalized color intrinsic image model
Thus far, intrinsic image decomposition works have obvi-

ated the photometric issues described above and have made
some assumptions to simplify the problem. Under the as-
sumptions of Lambertian surfaces and single white light, the
intrinsic image decomposition problem is reduced to the es-
timation of shading and reflectance images [8, 30, 28, 14]
according to

I(x, y) = IShad(x, y) ◦ IRefl(x, y)
2, (9)

where IShad represents the amount of reflection arriving to
the (x, y) point of the image from a specific point of the ob-
ject surface considering the shape of the objects in the scene
and the position of the light source, and IRefl describes how
the light is reflected by the corresponding point of the ob-
ject considering the material reflectance properties. Since
the model is assumed to be defined for any image point, the
notation (x, y) is further omitted for the sake of simplicity.

In [7] a specularity term was added to the model

I = IShad ◦ IRefl + ISpec, (10)

where ISpec denotes the specular reflection of the objects in
the scene.

Barron et al. [5] modeled the shading image as a func-
tion, M , of the shape of the scene, IShape, and the color and
direction of the illuminant, L = [LCLig,LGLig], which led
to the decomposition

I = IShad ◦ IRefl =M(IShape,L) ◦ IRefl. (11)

However, the effects of camera sensors and illumination
have not been jointly considered. As explained above, im-
age values are affected by both factors and, therefore, the
reflectances recovered by previous methods depend on the
illuminant and the sensor used to acquire the image. We
refer to such recovered reflectances as relative reflectances.

2Here ’◦’ denotes the Hadamard product

To overcome these dependence problems that relative re-
flectance images have, we propose a general framework for
intrinsic image decomposition which takes into account both
illuminant and camera sensor effects, thus allowing us to re-
cover the reflectance images as if they were acquired with
the standard sRGB sensor under the canonical illuminant.
We define such images as absolute reflectance images, and
denote them IaRefl.

As introduced in Eq.8 the physical properties of the scene
at a pixel (reflection model, geometry, etc.) encoded in ps,c

can be isolated from the effects of the camera sensors and the
illuminant of the scene, described respectively in SSen and
LCLig . According to the DRM, we can decompose these
values, ps,c, into their diffuse and specular components as

ps,c = ps,c
Shad ◦ p

s,c
Refl + ps,c

Spec, (12)

where ps,c
Shad and ps,c

Refl describe the magnitude and compo-
sition of the body (i.e. diffuse) reflection, and ps,c

Spec repre-
sents the magnitude of the surface (i.e. specular) reflection.
Hence, from Eqs.8 and 12 the general formulation at a pixel,
p, is

p = LCLig · SSen · (ps,c
Shad ◦ p

s,c
Refl + ps,c

Spec), (13)

Eq. 13 can be extended from a pixel level to a whole image
level, leading to our proposal for an intrinsic image model
which deals with absolute reflectances:

I = LCLig · SSen · (IShad ◦ IaRefl + ISpec). (14)

3.1. Model particularities and relation to previous
models

Depending on the knowledge we have about the scene
and the acquisition conditions, or the assumptions we make
on them, our model leads to different simplifications of the
general formula proposed in Eq.14. Furthermore, existing
formulations (Eqs.9-11) in the intrinsic image decomposi-
tion field can be derived from our model as specific cases.
Let us describe some of these assumptions and discuss how
they influence the general formulation of our model.

When surfaces in the scene are Lambertian, specularities
can be discarded from the general formulation (i.e. ISpec =
0) and Eq.14 becomes:

I = LCLig · SSen · (IShad ◦ IaRefl). (15)

When there is a single canonical light source, our illumi-
nant transformation happens to be a diagonal matrix with a
single scalar value for the three channels. Therefore, LCLig

is substituted by the scalar value κ:

I = κ · SSen(IShad ◦ IaRefl + ISpec). (16)

When camera sensors are narrow band, LCLig can be de-
scribed by a diagonal matrix. When this happens, we can
write LCLig = ICLig , where ICLig is a 3-channel image
containing a single homogeneous color (i.e. the values of



the color are the values of the diagonal in LCLig), and use
the Hadamard product to multiply this term with the shading
and the absolute reflectance intrinsic images:

I = SSen · (ICLig ◦ IShad ◦ IaRefl + ICLig ◦ ISpec). (17)

As explained in section 2.3, if camera sensors are not nar-
row band, spectral sharpening can be applied to make them
more narrow band, which allows us to write LCLig = ICLig

as in the previous case. Including the transform T defined
in Eq.6, the formulation above stands:

I = T −1 · [ICLig ◦ IShad ◦ (T · SSen · IaRefl)+

ICLig ◦ (T · SSen · ISpec)]. (18)

When the camera sensors are the canonical sRGB sen-
sors, SSen is the identity matrix, resulting in

I = LCLig · (IShad ◦ IaRefl + ISpec). (19)

However, when the conditions described above are not
fulfilled, as it is usually the case with natural images, we
cannot estimate an accurate intrinsic absolute reflectance
IaRefl. In such case, the absolute reflectance can only be
approximated by a relative reflectance image, IrRefl. For
instance, when we have no knowledge about the camera
sensors and canonical sRGB sensors are assumed (i.e. es-
timating SSen is not possible), the estimated reflectance is
IrRefl = SSen · IaRefl.

Existing models for intrinsic image decomposition can
also be derived from this generalized model by consider-
ing their specific assumptions. Several approaches [28, 27,
24] assume Lambertian objects (ISpec = 0), white light
(LCLig = κ) and unknown camera sensors (SSen = Id),
which yields

I = κ · (IShad ◦ IrRefl), (20)

where IrRefl = LCLig · SSen · (IaRefl + ISpec). This is
equivalent to Eq.9. Other approaches [7], deal with the spec-
ular image term while keeping the white light assumption
(LCLig = κ) and having no knowledge of the camera sen-
sors (SSen = Id). This leads to

I = κ · (IShad ◦ IrRefl + ISpec), (21)

where IrRefl = LCLig · SSen · IaRefl. This is, in fact, Eq.10.
Finally, Barron et al.[5] (Eq.11) relaxed the white light as-
sumption. If narrow band sensors are assumed (LCLig =
ICLig) our model becomes:

I = IShad ◦ ICLig ◦ IrRefl, (22)

where IrRefl = L̃CLig · SSen · (IaRefl + ISpec), and L̃CLig

represents the information of the light source not modeled
by ICLig when the sensors are not narrow-band.

Camera Scene Illuminant
Scenario Sensors Illuminant Model

SC1 Known Known Full
SC2 Known Known Diagonal
SC3 Unknown Known Diagonal
SC4 Unknown Unknown Diagonal

Table 1: Description of the scenarios used in the experiment.

4. Measuring light and sensor effects
In the previous sections we have proposed a new model

for intrinsic image decomposition that revisits the simplis-
tic image product formulation. Our approach includes con-
straints derived from considering the color of the light
source and the bias introduced by the acquisition process.
In this section we want to measure to what extent these con-
siderations can improve intrinsic images decomposition in
both, synthetic and real data.

4.1. Experiment 1: Synthetic data

We propose a set of experiments simulating different sce-
narios involving different assumptions on the sensors, the
light source, or the illuminant model.

These scenarios differ by the degree of knowledge of the
scene. The camera sensors may be either known (in which
case we use the corresponding sensor responsivity func-
tions), or unknown (standard sRGB sensors are assumed).
We use the light source spectral power distribution when it
is known or estimated, or a canonical D65 illuminant when
information about the light source in not available. The
model of illumination can either be a diagonal or a full 3-
by-3 model. Taking these considerations into account, we
define four different scenarios (summarized in Table 1):

Scenario 1 (SC1). It corresponds to the ideal case.
We know both camera sensors and scene light source, and
LCLig is approximated by a full illuminant model.

Scenario 2 (SC2). It is identical to SC1 except that a
diagonal illumination model is assumed, just as most color
constancy methods do.

Scenario 3 (SC3). Here the camera sensors are unknown
(i.e. standard sensors are assumed) but the scene illuminant
is known or can be estimated.

Scenario 4 (SC4). Here we have no knowledge of either
the camera sensors (standard sensors are assumed) or of the
lighting conditions (a canonical illuminant is assumed).

For this experiment we use a dataset of 1995 spectra com-
piled from several sources in Barnard et al. dataset [4].
These reflectances include the 24 Macbeth color-checker
patches, 1269 Munsell chips, 120 Dupont paint chips, 170
natural objects, the 350 surfaces in Krinov dataset, and 57
additional reflectances. These data allow us to synthesize
the scenes for the experiment. To simulate the light source of
the scenes, we have used the spectral power distributions of
10 different illuminants, both Planckian and non-Planckian.
These illuminants have been chosen from the same Barnard
et al. dataset [4]. Their spectral power distributions are



shown in the supplementary material. To simulate the imag-
ing process we have used 7 different sets of commercial
cameras sensors (Canon EOS1D, Sigma Foveon D10, Ko-
dak DCS420, Leica M8, Nikon D70, Olympus E400, Sony
DXC930, and TVI MSC-1024RGB12).

We have performed the experiments on 10 different
scenes, each one synthesized with 140 different reflectances
randomly chosen from Barnard’s dataset. Each scene has
been integrated with any of the 10 illuminants and subse-
quently with any of the 7 sets of camera sensors, provid-
ing the pixel values p. Our ground-truth (i.e. absolute re-
flectances) are the same 10 scenes integrated with the canon-
ical D65 illuminant spectral power distribution and standard
sRGB sensitivity curves. The ground-truth values are de-
noted by ps,c.

We also acquire relative reflectance values by integrat-
ing each reflectance spectral distribution with the spectral
power distribution of the canonical illuminant D65 and each
of the 7 sets of camera sensors, resulting in a set of pc val-
ues. We approximate the camera sensor transformation ma-
trix, SSen, from ps,c and pc using a 3-by-3 matrix estimated
by least squares minimization. The illuminant transforma-
tion matrix LCLig can be estimated from p and pc values
following the same procedure.

Figure 2 illustrates the results of this experiment. To mea-
sure the error we use the chromatic angular error between
ground truth values and the reflectance recovered in any of
the scenarios. This error metric has been previously used in
the literature to test the accuracy of color constancy methods
[16]. We observe that the error behaves as expected: the less
information we have about the camera sensors and the scene
illuminant, the worse our reflectance estimate is. However,
even when we have partial information we are still able to
estimate the illuminant transformation matrix and the cam-
era sensor behavior, which makes our method widely appli-
cable.

4.2. Experiment 2: Natural images

In our second experiment, we use a set of images from
Flickr (http://www.flickr.com/ ). We choose images from six
well-known scenarios (Figure 3), taken with four popular
DSLR camera models, namely Canon EOS 5D Mark II,
Nikon D50, Nikon D7000 and Sony NEX-5.

The images selected for this experiment fulfill the basic
assumptions of our model: scenes with a single light source
and known camera sensors. The amount of pictures that we
choose for each camera model and image category depends
on the number of available pictures which satisfy these re-
quirements.

When the set of images for this experiment has been se-
lected, we first remove its gamma correction. Then, we man-
ually choose two or three regions for each picture. These
regions describe a single material under similar illumination
conditions (i.e. overshadowed and saturated areas of the pic-
ture are avoided). The mean value of these regions is used
as a color descriptor for this picture.

(a) 4.68 ◦ (b) 4.29 ◦ (c) 2.76 ◦

(d) 4.70 ◦ (e) 2.45 ◦ (f) 0.91 ◦

(g) 9.96 ◦ (h) 3.05 ◦ (i) 2.40 ◦

Figure 4: Results on 3 pairs of natural images. At each row,
in the first column we see a pair of original images. In the
second column a color constancy algorithm has been applied
(Grey-Edge [29]). In the last column, we see the images
of the second column after their camera sensor effects have
been removed. The chromatic angular errors are expressed
in degrees.

.

For each of the pictures we apply different color con-
stancy methods (Shades of Grey [10] and Grey-Edge [29]).
We finally remove the effects of the sensors for each of them
(i.e. express the image values under sRGB sensors) by using
the transformation matrices we obtain at DxOMark website
(http://www.dxomark.com/ ).

Figure 4 shows some qualitative results where the im-
provement after applying a color constancy algorithm and
removing the effect of the camera sensors is clear. In Figure
5 we present quantitative results using a color constancy al-
gorithm to estimate the illuminant of the scenes. For each
picture, we use the color descriptors described above to-
gether with the chromatic angular error to compare each
possible pair of images. Using this measure we compute the
amount of pairs of pictures which are closer, from a chro-
matic point of view, after applying our model. When the
effects of both the illuminant and the camera sensors are re-
moved, there is an average decrease in the error of 22.59%.
These results are coherent with those we obtain in our pre-
vious experiment with synthetic data. Figure 1 shows how
this model can be applied in practice to the problem of in-
trinsic image decomposition. More examples on synthetic
and lab-acquired objects can be found in the supplementary
material.

5. Discussion and conclusion
In this paper we have shown how the application of in-

sights from the color constancy literature has led to an im-
proved general framework that explicitly models the effects



Figure 2: Mean angular error for different commercial cameras in multiple scenarios. The most information we have about
our scene, the best our reflectance estimate will be. Scenario 4 always assumes canonical illumination and standard sensors,
like most existing intrinsic image models. Scenarios 1 and 2 represent our model when there is some knowledge about scene
illumination and camera sensors.

Figure 3: Image categories: From left to right, the Golden Gate bridge (San Francisco), the Statue of Liberty (New York City),
the Kinkakuji temple (Kyoto), the church of Sagrada Famı́lia (Barcelona), the Uluru Rock (Australian desert) and St. Basil’s
cathedral (Moscow).

Figure 5: Mean angular error among pairs of images from
our set of natural images. In scenario C we always assume
canonical illumination and standard sensors. In scenario B
standard sRGB sensors are assumed but we estimate the il-
luminant using a color constancy method (Shades of Grey
[10]). In scenario A we estimate the illuminant and also re-
move the effects of the camera sensors. The error decreases
accordingly to the available information about the illuminant
and the camera sensors. Similar results are obtained when
using Grey-Edge [29].

of illuminant and sensor responses. This enables the estima-
tion of absolute reflectance images, an elaboration on the in-
trinsic image concept, which exhibit increased invariance to
illuminant or sensor changes. As direct consequences of our
framework we can model camera effects. When the camera
sensors are sufficiently narrow band, the illuminant trans-
formation model is described by means of a diagonal ma-
trix. When sensor responses are not narrow band but known,
spectral sharpening [12] can be applied. Otherwise, a full
(i.e. non-diagonal) linear model is used. Furthermore, we
can model scene illumination. This is an important step to-
wards the normalization of color through different acquisi-
tions with the same device.

Absolute reflectances could prove useful to many appli-
cations. Imagine a set of cameras placed outdoors with
known camera sensors (e.g. transit cameras placed along
a highway). Illumination effects will be very diverse de-
pending on the location of each camera and the time of
the day and the year when the images were taken. How-
ever, if we estimate the color of the illuminant using color
constancy, then we could infer an absolute reflectance im-
age which would be very useful for further computer vi-
sion tasks. Imagine we have multiple camera devices in a
lab. We do not know anything about their sensors, but we
have control over the scene illumination and know its spec-
tral distribution. If we place an object with some known
reflectance values in the scene, we can estimate a sensor
transformation for each camera. This way, we can estimate



absolute reflectance images for any camera. Finally, imag-
ine we have a camera with unknown sensors and we have no
knowledge about the illuminant either. However, we know
or can approximate some reflectance values which appear
in the scene. This could lead to data-driven approaches for
the inference of illuminant and sensor type. Furthermore,
one could envision absolute reflectance descriptors, which
would provide a characterization of object materials invari-
ant to specific device characteristics.
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